1. Solve and graph this inequality: $3 x>9$

2. Solve and graph this inequality: $(-2)(x+3) \leq 14$


Translate into an Inequality, and then graph: All real numbers that are less than 8 and 3. greater than -12.

4. The sum of the lengths of any two sides of a triangle is greater than the length of the third side. The perimeter of this triangle is greater than 23. Write a Compound Inequality that describes $x$, and then graph:

5. Solve and graph: $2|x+1|-3 \geq 3$
$x \geq 2$ or $x \leq-4$

6. The average monthly temperature in a northern Canadian city is 1 degree Fahrenheit. The actual January temperature for that city ( $\mathbf{t}=$ actual temperature) is never more than 5 degrees Fahrenheit warmer or colder. Solve $|t-1| \leq 5$ to find the range of temperatures. Graph the solution.
$-4 \leq \mathbf{t} \leq 6$

7. Graph this Inequality: $\mathbf{2 y - x} \geq \mathbf{- 1 2}$

8. What Inequality is graphed here?
$y \leq 1 / 4 x-10$

9. Write and graph $\mathbf{2}$ equations to determine the $\mathbf{2}$ numbers that satisfies this statement: the sum of two numbers is 8 and their difference is 4.

10. I have six coins in my pocket. They are all either pennies of nickels. The change in my pocket totals 18ф. How many pennies and how many nickels do I have?

Hint: let $x=$ number of nickels and $y=$ number of pennies.

|  | Equation 1 | Equation 2 | nickels |
| ---: | :---: | :---: | :---: |
| Any form | $\mathbf{x + y = 6}$ | $5 x+y=18$ | $\mathbf{3}$ |
| Slope-Intercept form | $\mathbf{y}=-\mathbf{x + 6}$ | $\mathbf{y}=-5 x+18$ | pennies |
|  | $\mathbf{3}$ |  |  |

11. Solve using substitution: $2 x-8 y=4$ and $-2 x+y=17$
12. Solve using Addition or Subtraction: $2 x-2 y=-16$ and $x-2 y=-7$

13. 

| length of <br> sitcoms | length of <br> dramas |
| :---: | :---: |
| 25 | 26 |

Write a system of equations to describe the situation below, solve using any method. A TV station executive is planning the new lineup for next season's shows. On Monday nights, there will be 6 sitcoms and 1 drama, for a total of 176 minutes of programming, not counting commercials. On Tuesday nights, she has scheduled 2 sitcoms and 2 dramas, for a total of 102 minutes of non-commercial programming. All sitcoms have the same length and all dramas have the same length. How long is each type of show?
14. Is $(3,1)$ a solution to this system of equations?

$$
x+2 y=4
$$

$$
15 x+18 y=14
$$

The shaded area shown here describes the solution set to what $\mathbf{3}$ linear
15. inequalities?


| Inequality 1 | Inequality 2 | Inequality 3 |
| :---: | :---: | :---: |
| $\mathbf{y}<\mathbf{6}$ | $\mathbf{y}<\mathbf{x}$ | $\mathbf{y} \geq \mathbf{2 x}+\mathbf{2}$ |

16. Graph these Inequalities and shade in the solution:
$y>2 x-4$
$y \leq x+2$

17. Simplify these expressions

| Expression | Simplified |
| :---: | :---: |
| g4 * g3 | g7 |
| $\left(a^{2}\right)^{3}$ | $\mathrm{a}^{6}$ |
| $\mathrm{a}^{2}{ }^{\text {a }}{ }^{3}$ | $\mathbf{a}^{5}$ |
| $\mathrm{x}^{3}{ }^{\left(x^{4}\right)^{2}}$ | $\mathrm{x}^{11}$ |
| $(\mathrm{ab})^{2}$ * a | $a^{3} b^{2}$ |
| $\left(x^{3} y^{2}\right)^{2}$ | $x^{6} y^{4}$ |
| (2x) ${ }^{2}$ 2x | $8{ }^{3}$ |
| expression | simplified |
| $6^{-2}$ | $1 / 36$ |
| $z^{\circ}$ | 1 |
| $\left(x^{2} y\right)^{\prime}$ | $\mathbf{x}^{\mathbf{0}} \mathbf{y}^{\text { }}$ |
| $\mathbf{x}^{*} \mathbf{x}^{\text {J }}$ | $\mathbf{x}^{\text {- }}$ |
| $\left(2 y^{0}\right)^{2}$ | $4 y^{\circ}$ |
| (3x) $\div(3 x)$ | $\mathbf{x}^{2}$ |

18. Simplify:
19. 

|  | Simplify if necessary, and then rewrite | Ionghand |
| :--- | :---: | :---: |
| Sach number to fill in the blank: |  | Scientific Notation |
|  | .0000000000042 | $4.2 \times 10^{-12}$ |
| $265,300,000,000,000$ | $2.653 \times 10^{14}$ |  |
| $800 * 465,000,000$ | $3.72 \times 10^{11}$ |  |

20. Simplify these expressions:

| Expression | Simplified |
| :---: | :---: |
| $9^{-1 / 2}$ | $1 / 3$ |
| $66-64^{1 / 3}$ | 62 |

21. A mouse population is $\mathbf{2 5 , 0 0 0}$ and is decreasing in size at a rate of $\mathbf{2 0 \%}$ per year. What is the mouse population after 3 years?

|  | Equation |
| :---: | :---: |
|  | $y=25,000 * .8^{x}$ |
|  | Number of Mice |
| 12,800 |  |

22. Graph $y=2^{*} 1 / 3^{*}$


| $x$ | $y$ |
| :---: | :---: |
| -2 | 18.00 |
| -1 | 6.00 |
| 0 | 2.00 |
| 1 | 0.67 |
| 2 | 0.22 |

23. $\left(3 x^{2}+4+2 x\right)-(x 2+3 x-4)$

24. $3 c(2 a+8)$
$6 a c+24 c$
25. 

| Find the product of these binomials |  |  |
| :---: | :---: | :---: |
| $(3 x+4)$ | $(3 x+4)$ | $9 x^{2}+24 x+16$ |
| $(3 x+4)$ | $(3 x-4)$ | $9 x^{2}-16$ |
| $(3 x-4)$ | $(3 x-4)$ | $9 x^{2}-24 x+16$ |
| $(z-5)$ | $(z-5)$ | $z^{2}-10 z+25$ |
| $(z-6)$ | $(z+6)$ | $z^{2}-36$ |

26. Factor these polynomials completely:

| Polynomial | Factor | Factor | Factor |
| :---: | :---: | :---: | :---: |
| $3 x^{5}+3 x^{4}-90 x^{5}$ | 3x | x+6 | x-5 |
| 3z ${ }^{\text {- }} 48 z^{\prime}$ | 3z | z+4 | z-4 |
| 12k-3k | 3k | $2+$ k | 2-k |
| 80x $-45 x^{\circ}$ | 5x | 4x+3 | 4x-3 |
| $\mathrm{s}^{4}-\mathrm{s}^{2}$ | $\mathrm{s}^{2}$ | s + 1 | s-1 |
| 7a'b ${ }^{\text {- }}$-63ab ${ }^{\text {a }}$ | 7ab | ab-3b | $\mathbf{a b}+3 \mathbf{b}$ |
| 75c ${ }^{5}$ - $3 c^{\prime}$ | $3{ }^{\prime}$ | $5 \mathrm{c}+1$ | 5c-1 |

