\qquad

Closed Book; 60 minutes to complete CUCC; You may use a calculator.

1. Solve and graph this inequality: $3 x>9$ \square

2. Solve and graph this inequality: $(-2)(x+3) \leq 14$

Translate into an Inequality, and then graph: All real numbers that are less than 8 3. and greater than -12.

4. The sum of the lengths of any two sides of a triangle is greater than the length of the third side. The perimeter of this triangle is greater than 23. Write a Compound Inequality that describes x, and then graph:

5. Solve and graph: $2|x+1|-3 \geq 3$

6. The average monthly temperature in a northern Canadian city is $\mathbf{1}$ degree Fahrenheit. The actual January temperature for that city ($\mathbf{t}=$ actual temperature) is never more than 5 degrees Fahrenheit warmer or colder. Solve $|\mathbf{t}-1| \leq 5$ to find the range of temperatures. Graph the solution.

7. Graph this Inequality: $\mathbf{2 y - x} \geq \mathbf{- 1 2}$

8. What Inequality is graphed here?

9. Write and graph 2 equations to determine the 2 numbers that satisfies this statement: the sum of two numbers is $\mathbf{8}$ and their difference is 4.

10. I have six coins in my pocket. They are all either pennies of nickels. The change in my pocket totals 184. How many pennies and how many nickels do I have?
Hint: let $\mathbf{x}=$ number of nickels and $\mathbf{y}=$ number of pennies.

	Equation 1	Equation 2	nickels
Any form			
Slope-Intercept form			pennies

11. Solve using substitution: $2 x-8 y=4$ and $-2 x+y=17$ \square
12. Solve using Addition or Subtraction: $2 x-2 y=-16$ and $x-2 y=-7$
13.

$\left.$| length of |
| :---: | :---: | :---: |
| sitcoms | | length of |
| :---: |
| dramas | \right\rvert\, | |
| :--- |

Write a system of equations to describe the situation below, solve using any method. A TV station executive is planning the new lineup for next season's shows. On Monday nights, there will be $\mathbf{6}$ sitcoms and 1 drama, for a total of $\mathbf{1 7 6}$ minutes of programming, not counting commercials. On Tuesday nights, she has scheduled 2 sitcoms and 2 dramas, for a total of 102 minutes of non-commercial programming. All sitcoms have the same length and all dramas have the same length. How long is each type of show?
14. Is $(3,1)$ a solution to this system of equations?

$$
x+2 y=4 \quad 15 x+18 y=14
$$

15. The shaded area shown here describes the solution set to what 3 linear inequalities?

Inequality 1	Inequality 2	Inequality 3

16. Graph these Inequalities and shade in the solution:
$y>2 x-4$
$y \leq x+2$

17. Simplify these expressions

Expression
18. Simplify:

$\mathbf{g 4}{ }^{*} \mathbf{g} 3$	
$\left(\mathbf{a}^{2}\right)^{3}$	
$\mathbf{a}^{2}{ }^{*} \mathbf{a}^{3}$	
$\mathbf{x}^{3}{ }^{*}\left(\mathbf{x}^{4}\right)^{2}$	
$(\mathbf{a b})^{2}{ }^{*} \mathbf{a}$	
$\left(\mathbf{x}^{3} \mathbf{y}^{2}\right)^{2}$	
$(2 \mathbf{2 x})^{2}{ }^{2} \mathbf{2 x}$	
expression	simplified
$\mathbf{6}^{-2}$	
\mathbf{z}^{0}	
$\left(\mathbf{x}^{2} \mathbf{y}\right)^{3}$	
$\mathbf{x}^{3}{ }^{*} \mathbf{x}^{5}$	
$\left(2 \mathbf{y}^{3}\right)^{2}$	
$\left(3 \mathbf{x}^{3}\right) \div(3 \mathbf{x})$	

19. Simplify if necessary, and then rewrite each number to fill in the blank:
20. Simplify these expressions:

longhand	Scientific Notation	
.0000000000042		
	Expression	Simplified
	$9^{-1 / 2}$	
	$66-64^{1 / 3}$	

21. A mouse population is $\mathbf{2 5 , 0 0 0}$ and is decreasing in size at a rate of $\mathbf{2 0 \%}$ per year.

22. Graph $y=2$ * $1 / 3^{n}$

\mathbf{x}	\mathbf{y}

23. $\left(3 x^{2}+4+2 x\right)-(x 2+3 x-4)$
24. $3 c(2 a+8)$
25.

Find the product of these binomials		
$(3 x+4)$	$(3 x+4)$	
$(3 x+4)$	$(3 x-4)$	
$(3 x-4)$	$(3 x-4)$	
$(z-5)$	$(z-5)$	
$(z-6)$	$(z+6)$	

26. Factor these polynomials completely:

Polynomial	Factor	Factor	Factor
$3 x^{5}+3 x^{4}-90 x^{3}$			
$3 z^{5}-48 z^{3}$			
12k-3k ${ }^{3}$			
80x ${ }^{8}-45 x^{6}$			
$\mathrm{s}^{4}-\mathrm{s}^{2}$			
$7 a^{3} b^{3}-63 a b^{3}$			
$75 c^{9}-3 c^{7}$			

